Micron particle deposition in a tracheobronchial airway model under different breathing conditions.

نویسندگان

  • Kiao Inthavong
  • Lok-Tin Choi
  • Jiyuan Tu
  • Songlin Ding
  • Francis Thien
چکیده

Effective management of asthma is dependent on achieving adequate delivery of the drugs into the lung. Inhalers come in the form of dry powder inhalers (DPIs) and metered dose inhalers (pMDIs) with the former requiring a deep fast breath for activation while there are no restrictions on inhalation rates for the latter. This study investigates two aerosol medication delivery methods (i) an idealised case for drug particle delivery under a normal breathing cycle (inhalation-exhalation) and (ii) for an increased effort during the inhalation with a breath hold. A computational model of a human tracheobronchial airway was reconstructed from computerised tomography (CT) scans. The model's geometry and lobar flow distribution were compared with experimental and empirical models to verify the current model. Velocity contours and secondary flow vectors showed vortex formation downstream of the bifurcations which enhanced particle deposition. The velocity contour profiles served as a predictive tool for the final deposition patterns. Different spherical aerosol particle sizes (3-10μm, 1.55g/cm(3)) were introduced into the airway for comparison over a range of Stokes number. It was found that a deep inhalation with a breath hold of 2s did not necessarily increase later deposition up to the sixth branch generation, but rather there was an increase in the deposition in the first few airway generations was found. In addition the breath hold allows deposition by sedimentation which assists in locally targeted deposition. Visualisation of particle deposition showed local "hot-spots" where particle deposition was concentrated in the lung airway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway

The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated apply...

متن کامل

Deposition and clearance of inhaled particles.

Theoretical models of respiratory tract deposition of inhaled particles are compared to experimental studies of deposition patterns in humans and animals, as governed principally by particle size, density, respiratory rate and flow parameters. Various models of inhaled particle deposition make use of approximations of the respiratory tract to predict fractional deposition caused by fundamental ...

متن کامل

Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics.

BACKGROUND The human respiratory airway undergoes dramatic growth during infancy and childhood, which induces substantial variability in air flow pattern and particle deposition. However, deposition studies have typically focused on adult subjects, the results of which cannot be readily extrapolated to children. We developed models to quantify the growth of human nasal-laryngeal airways at earl...

متن کامل

The effect of heterogeneity of lung structure on particle deposition in the rat lung.

Differences in particle deposition patterns between human and rat lungs may be attributed primarily to their differences in breathing patterns and airway morphology. Heterogeneity of lung structure is expected to impact acinar particle deposition in the rat. Two different morphometric models of the rat lung were used to compute particle deposition in the acinar airways: the multiple-path lung (...

متن کامل

Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.

Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 32 10  شماره 

صفحات  -

تاریخ انتشار 2010